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a b s t r a c t

In this paper we propose a general methodology for solving a broad class of continuous, multifacility location

problems, in any dimension and with �τ -norms proposing two different methodologies: (1) by a new sec-

ond order cone mixed integer programming formulation and (2) by formulating a sequence of semidefinite

programs that converges to the solution of the problem; each of these relaxed problems solvable with SDP

solvers in polynomial time.
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1. Introduction

Multifacility location problems are among the most interesting

and difficult problems in Location Analysis. It is well-known that even

in their discrete version the p-median and p-center problems are al-

ready NP-hard (see Kariv and Hakimi, 1979.) A lot of attention has

been paid in the last decades to these classes of problems, namely

location-allocation problems, since they are easy to describe and to

understand and they still capture the essence of difficult problems

in combinatorial optimization. A comprehensive overview over exist-

ing models and their applications is given by Drezner and Hamacher

(2002) and the references therein.

On the other hand, also in the last two decades locators have de-

voted much effort to solve continuous location problems that fall

within the general class of global optimization, i.e. convexity prop-

erties are lost. Given a set of demand points (existing facilities) the

goal is to locate several facilities to provide service to the existing

ones (demand points) minimizing some globalizing function of the

travel distances. Assuming that each demand point will be served

by its closest facility we are faced with another location-allocation

problem but now the new facilities can be located anywhere in the
✩ The first and second authors were partially supported by the project FQM-5849
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ramework space and therefore they are not confined to be in an “a

riori” given set of locations. These problems are much harder than

he discrete ones and not much has been obtained regarding algo-

ithms, and general convergence results, although some exceptions

an be found in the literature (see Albareda, Hinojosa, and Puerto,

015; Brimberg, Drezner, Mladenović, and Salhi, 2014; Brimberg,

ansen, Mladenovic, and Taillard, 2000; Michelot, 1987 and the ref-

rences therein).

Since the 1990s a new family of objective functions has started to

e considered in the area of Location Analysis: the ordered median

roblem (Nickel & Puerto, 2005). Ordered median problems repre-

ent as special cases nearly all classical objective functions in location

heory, including the Median, CentDian, Center and k-Centra. Hence,

andling the most important objective functions in Location Anal-

sis is possible with one unique model and also new ones may be

reated by adapting the parameters adequately. More precisely, the

-facility ordered median problem can be formulated as follows: a

ector of weights (λ1, . . . , λn) is given. The problem is to find loca-

ions for the facilities that minimize the weighted sum of distances

o the facilities where the distance to the closest point to its allo-

ated facility is multiplied by the weight λn, the distance to the sec-

nd closest, by λn−1, and so on. The distance to the farthest point is

ultiplied by λ1. As mentioned above, many location problems can

e formulated as the ordered 1-median problem by selecting appro-

riate weights. For example, the vector for which all λi = 1 is the p-

edian problem, the problem where λ1 = 1 and all others are equal

o zero is the p-center problem, the problem where λ1 = . . . = λk = 1

nd all others are equal to zero is the p-k-centrum. Minimizing the

ange of distances is achieved by λ1 = 1, λn = −1 and all others

re zero. Lots of results have been obtained for these problems in
EURO) within the International Federation of Operational Research Societies (IFORS).
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iscrete settings, on networks and even in the continuous single facil-

ty case (see the book Nickel and Puerto, 2005 and the recent papers

lanco, El-Haj Ben-Ali, and Puerto, 2013; Boland, Dominguez-Marin,

ickel, and Puerto, 2006; Kalcsics, Nickel, Puerto, and Rodríguez-

hía, 2010; Marín, Nickel, Puerto, and Velten, 2009; Puerto, D. Pérez-

rito, and Garcia-González, 2014; Puerto and Rodriguez-Chia, 2011).

owever, very little is known in the continuous multifacility counter-

art (Kalcsics, Nickel, Pozo, Puerto, & Rodriguez-Chia, 2014).

In this paper, we address the multifacility continuous ordered me-

ian problem in finite dimension d and for general �τ -norm for mea-

uring the distances between points. We show how these problems

an be cast within a general family of polynomial optimization prob-

ems. Then, we show how these problems can be formulated as mixed

nteger second order cone programs or, using tools borrowed from

he Theory of Moments (Lasserre, 2009b), they can be solved (ap-

roximated up to any degree of accuracy) by a series of relaxed prob-

ems, each one of them is a SDP, polynomially solvable. We report

ome computational results on a battery of problems solved with the

resented models.

. Preliminaries

In this section we recall the main definitions and results on

emidefinite Programming and the Theory of Moments that will be

seful for the development through this paper. We use standard no-

ation in those fields (see e.g. Lasserre, 2009b; Wolkowicz, Saigal, &

andenberghe, 2000).

Semidefinite programming (SDP) is relatively a new subfield of

onvex optimization and probably one of the most exciting devel-

pment in mathematical programming. SDP is a particular case of

onic programming when one considers the convex cone of posi-

ive semidefinite matrices, whereas linear programming considers

he positive orthant, a polyhedral convex cone. This class of prob-

ems theoretically includes a large number of convex programming

odels such as convex quadratic programming (QP), or second-order

one programming (SOCP). Moreover, semidefinite programming has

xperienced a great growth during the 1990s, as a consequence

f the adaptation of some polynomial time interior point meth-

ds firstly developed for linear optimization to solve SDP. SDP du-

lity is not always strong because of the nonlinear positive semidef-

nite constraint. To avoid duality gaps, we can require the problem

nd its dual to satisfy some constraint qualification. The purpose

f a constraint qualification is to ensure the existence of Lagrange

ultipliers at optimality in nonlinear problems. These multipliers

re an optimal solution for the dual problem, and thus the con-

traint qualification ensures that strong duality holds: it is possible

o achieve primal and dual feasibility with no duality gap. One com-

on choice of constraint qualification is Slater’s constraint qualifica-

ion (Boyd & Vanderberghe, 2004). The handbooks (Anjos & Lasserre,

012) and (Wolkowicz et al., 2000) provide excellent coverage of SDP

s well as extensive bibliographic reviews of the literature up to the

ear 2012.

On the other hand, the Theory of Moments is a powerful tech-

ique that can be applied to approximate hard global optimization

roblems (Lasserre, 2009b). It can be used to construct hierarchies

f approximate problems whose optimal values converge to the op-

imal value of the multifacility location problems considered in this

aper. For this reason next we describe its basic elements. We denote

y R[x] the ring of real polynomials in the variables x = (x1, . . . , xd),
or d ∈ N (d ≥ 1), and by R[x]r ⊂ R[x] the vector space of polynomi-

ls of degree at most r ∈ N (here N denotes the set of non-negative

ntegers). We also denote by B = {xα : α ∈ Nd} a canonical basis of

onomials for R[x], where xα = x
α1
1

· · · x
αd

d
, for any α ∈ Nd . Note that

r = {xα ∈ B :
∑d

i=1 αi ≤ r} is a basis for R[x]r .
For any sequence indexed in the canonical monomial basis B, y =
yα)α∈Nd ⊂ R, let Ly : R[x] → R be the linear functional defined, for

ny f = ∑
α∈Nd fα xα ∈ R[x], as Ly( f ) := ∑

α∈Nd fα yα .

The moment matrix Mr(y) of order r associated with y, has

ts rows and columns indexed by the elements in the basis B =
xα : α ∈ Nd} and for two elements in such a basis, b1 = xα, b2 =
β , Mr(y)(b1, b2) = Mr(y)(α,β) := Ly(xα+β) = yα+β , for |α|, |β| ≤
(here |a| stands for the sum of the coordinates of a ∈ Nd). Note that

he moment matrix of order r has dimension (d+r
d ) × (d+r

d ) and that

here are (d+2r
d ) yα variables.

For g ∈ R[x] ( = ∑
γ ∈Nd gγ xγ ), the localizing matrix Mr(gy) of or-

er r associated with y and g, has its rows and columns indexed

y the elements in B and for b1 = xα, b2 = xβ, Mr(gy)(b1, b2) =
r(gy)(α,β) := Ly(xα+βg(x)) = ∑

γ gγ yγ +α+β , for |α|, |β| ≤ r.

Observe that a different choice for the basis of R[x], instead of the

tandard monomial basis, would give different moment and localiz-

ng matrices useful for instance to derive improvements in the relax-

tions for structured (symmetric or sparse) problems.

The main assumption to be imposed when one wants to assure

onvergence of some SDP relaxations for solving polynomial opti-

ization problems is known as the Arquimedean property (see for

nstance Lasserre, 2009a; 2009b) and it is a consequence of Putinar’s

esults (Putinar, 1993).

The importance of Archimedean property stems from the link be-

ween such a condition with the semidefiniteness of the moment and

ocalizing matrices (see Putinar, 1993). The use of this property for

he particular problems that we deal with through this paper will be

iven in the next sections. A detailed presentation and an account

f its implications can be found by Lasserre (2001). In the following

e shall use the following convention: for any matrix A ∈ Rn×n, we

enote by A�0 (resp. A	0) that the matrix A is positive semidefinite

resp. positive definite).

roposition 1 Lasserre (2001). Let K := {x ∈ Rd : g j(x) ≥ 0, j =
, . . . , m} ⊂ Rd satisfy the Archimedean Property and let p ∈ R[X] be a

olynomial. Let r ≥ r0 := max{
deg p
2 �, 
deg

g1
2 �, . . . , 
deg gm

2 �}, and

onsider the hierarchy of semidefinite relaxations

r :

inf
y

Ly(p)

Mr(y) � 0 ,

Mr−
deg gj/2�(gj y) � 0 , 1 ≤ j ≤ m

Ly(y0) = 1

(1)

ith optimal value denoted by infQr.

Then, the hierarchy of SDP-relaxations {(Qr)r≥r0
} is monotone non-

ecreasing and converges to ρ∗ := min x ∈ Kp(x).

SOCP is a particular class of problems that falls within the family

f SDP. SOCP refers to convex optimization problems in which a linear

unction is minimized over the intersection of an affine linear mani-

old with the Cartesian product of second-order cones. Many applica-

ions in engineering, statistics, robust optimization, finance or com-

inatorial optimization use SOCP models (see Lobo, Vandenberghe,

oyd, & Lebret, 1998). Although the available algorithms for SDP are

learly applicable to SOCP, specialized approaches for SOCP have been

roved to be more efficient for this family of problems (see Alizadeh

Goldfarb, 2003).

For the sake of readability and to do the paper self contained

e recall the following result, proved by Blanco, Puerto, and El-Haj

en-Ali (2014b), that allows to represent several types of constraints

s intersection of second order cone constraints.

emma 2 Blanco et al. (2014b). Let r, s ∈ N \ {0} such that gcd (r, s) =
. Then, the constraints

str−s ≥ xr,

x, u, t ≥ 0,
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can be equivalently written as a set of at most �log2(r)
 second order

cone inequalities with �log2(r)
 new (auxiliary) nonnegative variables.

3. The multiple allocation multifacility ordered median

location problem

This section deals with multifacility location models where more

than one new facility have to be located to improve the service for

the demand points. Several results obtained in previous papers are

extended or reformulated with great generality giving a panorama

view of the geometric insights of location theory.

We start by considering a class of multifacility ordered me-

dian problems already introduced by Nickel and Puerto (2005) and

Rodríguez-Chía, Nickel, Puerto, and Fernández (2000). We shall ex-

tend these models, originally considered only in dimension 2 and

with polyhedral norms to the more general case of any dimension

d > 1 and any �τ -norm being τ ∈ Q, τ ≥ 1 (here �τ stands for the

norm ‖x‖τ = (
∑d

i=1 |xi|τ ) 1
τ , for all x ∈ Rd). Unlike the original ap-

proaches for the planar case by Carrizosa and Puerto (1995); Nickel

and Puerto (2005); Rodríguez-Chía et al. (2000), where even for poly-

hedral norms there are proposed iterative algorithms for which poly-

nomiality results can not be proven; we shall follow on a different

approach. In this section, we provide efficient reformulations of these

classes of multifacility continuous location models. We apply tools

borrowed from conic programming to prove that these problems can

be polynomially solved.

We are given a set of demand points {a1, . . . , an} and three

sets of scalars {ω1, . . . , ωn} ⊆ R+, {λ11, . . . , λnp} ⊆ R+ and

{μ12,μ13, . . . ,μp−1p} ⊆ R+.

The elements ωi are weights corresponding to the importance

given to the existing facilities ai, i ∈ {1, . . . , n} and depending on the

choice of the λ-weights we get different classes of problems. The μ-

weights represent the penalty per distance unit given when locat-

ing two different facilities. We denote by Pn the set of permutations

of the first n natural numbers (i.e., Pn = {σ : {1, . . . , n} → {1, . . . , n} :

σ bijective}).

Natural extensions of the multifacility models considered by

Nickel and Puerto (2005) and Rodríguez-Chía et al. (2000), assume

that one is looking for the location of p new facilities rather than only

one. In this formulation the new facilities are chosen to provide ser-

vice to all the existing facilities minimizing an ordered median objec-

tive function. These ordered problems are of course harder to handle

than the classical ones not considering ordered distances. To simplify

the presentation we consider that the different demand points use

the same norm to measure distances, although all our results extend

further to the case of mixed norms (different norm for each facility).

Let us consider a set of demand points {a1, a2, . . . , an} ⊂ Rd . We

want to locate p new facilities X = {x1, x2, . . . , xp} which minimize

the following expression:

f NI
λ (x1, x2, . . . , xp) =

n∑
i=1

p∑
j=1

λi jd(i)(x j) +
p−1∑
j=1

p∑
j′= j+1

μ j j′ ‖x j − x j′ ‖τ ,

(2)

where for any x ∈ Rd, di(x) = ωi‖ai − x‖τ and d(i)(x) is the ith el-

ement in the permutation of (d1(x), . . . , dn(x)) such that d(1)(x) ≥
d(2)(x) ≥ . . . ≥ d(i)(x) ≥ . . . ≥ d(n)(x). In this model, it is assumed that

(see Rodríguez-Chía et al., 2000)

λ1 j ≥ λ2 j ≥ . . . ≥ λn j ≥ 0, ∀ j = 1, . . . , p. (3)

μ j j′ ≥ 0 for any j, j′ = 1, . . . , p and, as mention above, d(i)(xj) is the

expression, which appears at the ith position in the ordered version

of the list

LNI
j := (w1‖x j − a1‖τ , . . . , wn‖x j − an‖τ ) for j = 1, 2, . . . , p. (4)
ote that in this formulation we assign the lambda parameters

ith respect to each new facility, i.e., xj is considered to be

on-interchangeable with xi whenever i �= j. For this reason we say

hat this model has non-interchangeable facilities.

The problem consists of

NI
λ := min

x
{ f NI

λ (x) : x = (x1, . . . , xp), x j ∈ Rd, ∀ j = 1, . . . , p},
(LOCOMF-NI)

The reader should observe that this is the extension of Problem

3) by Rodríguez-Chía et al. (2000, Section 4.1).

heorem 3. The problem LOCOMF-NI attains an optimal solution.

roof. We know that
n

i=1

p∑
j=1

λi jd(i)(x j) =
n∑

i=1

max
σ

p∑
j=1

λi jwσ(i)‖x j − aσ(i)‖τ ,

here σ is a permutation of the set {1, 2, . . . , p}. Therefore, the first

art of the objective function is a sum of maxima of convex functions.

ence, it is a convex function. Thus, f NI
λ

is a convex function as a sum

f convex functions.

Next, suppose that we restrict ourselves to consider the prob-

em where x j = x for all j = 1, . . . , p. Assume that x∗ is a so-

ution. Then, for any x not optimal it must exist ix ∈ {1, . . . , n}
uch that ‖x − aix‖τ ≥ ‖x∗ − aix‖τ . Thus taking x = 0, we get

x∗ − ai0
‖τ ≤ ‖ai0

‖τ which implies that ‖x∗‖τ − maxi=1,...,n ‖ai‖τ ≤
axi=1,...,n ‖ai‖τ . Hence, any candidate x∗ to optimal solution must

atisfy ‖x∗‖τ ≤ 2 maxi=1,...,n ‖ai‖τ = M.

Let us denote by X the set {x ∈ Rp×d : ‖x j‖τ ≤ M, ∀ j = 1, . . . , p}.

bserve that for solving LOCOMF-NI we can restrict, without loss of

enerality, to X . Thus, it consists of minimizing the convex function

f NI
λ

over X which is compact in Rp×d and consequently by Weier-

trass theorem, Problem LOCOMF-NI admits at least one optimal

olution. �

The following result states a sufficient condition for uniqueness of

ptimal solution of Problem (LOCOMF-NI).

heorem 4. Assume that τ �∈ {1, +∞}, the demand points in A are not

ollinear and for all i = 1, . . . , n there exists at least one j ∈ {1, . . . , p}
uch that λij �= 0. Then the optimal solution of Problem (LOCOMF-NI) is

nique.

roof. We prove that the function f NI
λ

(x1, x2, . . . , xp) is strictly con-

ex which clearly implies the result.

Since the function f NI
λ

(x1, x2, . . . , xp) is globally convex we can

ake without loss of generality two points x̄, x̂ and [x̄, x̂] in the same

rdered region and γ ∈ (0, 1). (Observe that otherwise, we can de-

ompose the segment in subsegments satisfying the hypothesis and

e apply the same argument in each of them.) In the ordered region

he sorting of the distances is fixed and to simplify the presentation

e suppose that this sorting is induced by the identity permutation.

By hypothesis, the demand points in A are not collinear and

he ‖ · ‖τ -norm is strictly convex for τ ∈ (1, +∞); thus, for each

j ∈ 1, . . . , p there exists i(j) such that ‖γ x̄ j + (1 − γ )x̂ j − ai( j)‖τ <

‖x̄ j − ai( j)‖τ + (1 − γ )‖x̂ j − ai( j)‖τ , j ∈ 1, . . . , p. These inequal-

ties imply that f NI
λ

(γ (x̄1, x̄2, . . . , x̄p) + (1 − γ )(x̂1, x̂2, . . . , x̂p)) <

f NI
λ

(x̄1, x̄2, . . . , x̄p) + (1 − γ ) f NI
λ

(x̂1, x̂2, . . . , x̂p). �

Note that when the demand points in A are collinear one can find

ultiple solutions to Problem (LOCOMF-NI). The following example

llustrates this situation.

xample 5. Let A = {(0, 0), (1, 1), (2, 2), (10, 10)} be a set of demand

oints in R2 endowed with the �2-norm and consider the following

eights wi = 1 for all i = 1, . . . , 4, μ12 = 0 and

λ11 = λ21 = λ31 = λ41 = 1,

12 = 1, λ22 = λ32 = λ42 = 0.
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Fig. 1. Demand points in Example 5 (circles) and solutions (triangles and square).
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The optimal value of (LOCOMF-NI) for p = 2 facilities is f ∗ = 16
√

2

hich is attained by x∗
1

∈ {(x, x) : x ∈ [1, 2]}, x∗
2

= (5, 5). Fig. 1 shows

he demand points (circles) and the optimal solutions to the problem

triangles and square).

Next we prove that Problem LOCOMF-NI can be reformulated in

n appropriate way that allows us the development of an efficient

lgorithm based on the theory of second order cone programming.

heorem 6. Let τ = r
s be such that r, s ∈ N \ {0}, r ≥ s and gcd (r, s) =

. For any set of lambda weights satisfying λ1 j ≥ . . . ≥ λn j ≥ 0 for all

j = 1, . . . , p, Problem (LOCOMF-NI) is equivalent to

NI
λ = min

n∑
i=1

p∑
j=1

vi j +
n∑

�=1

p∑
j=1

w� j +
p−1∑
j=1

p∑
j′= j+1

t j j′ (NIMFOMP)λ

.t. vi j + w� j ≥ λ� jui j,∀i, � = 1, . . . , n, j = 1, . . . , p (5)

i jk − x jk + aik ≥ 0,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d (6)

i jk + x jk − aik ≥ 0,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d, (7)

r
i jk ≤ ς s

i jkur−s
i j

,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d, (8)

r
s

i

d∑
k=1

ςi jk ≤ ui j,∀i = 1, . . . , n, j = 1, . . . , p (9)

j j′k − x jk + x j′k ≥ 0,∀ j, j′ = 1, . . . , p, k = 1, . . . , d, (10)

j j′k + x jk − x j′k ≥ 0,∀ j, j′ = 1, . . . , p, k = 1, . . . , d, (11)

r
j j′k ≤ ξ s

j j′ktr−s
j j′ ,∀ j, j′ = 1, . . . , p, k = 1, . . . , d, (12)

r
s

j j′

d∑
k=1

ξ j j′k ≤ t j j′ ,∀ j, j′ = 1, . . . , p, (13)

i jk ≥ 0,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d, (14)

j j′k ≥ 0,∀ j, j′ = 1, . . . , p, k = 1, . . . , d, (15)

i j ∈ R, w� j ∈ R, t j j′ ≥ 0,∀i = 1, . . . , n, j, j′ = 1, . . . , p (16)

i jk ≥ 0, z j j′k ≥ 0,∀i = 1, . . . , n, j, j′ = 1, . . . , p, k = 1, . . . , d. (17)

oreover, (NIMFOMPλ) satisfies Slater condition and it can be repre-

ented as a second order cone program with (np + p2)(2d + 1) + p2

inear inequalities and at most 4(p2d + npd) log r second order cone in-

qualities.
roof. Note that the condition λ1 j ≥ . . . ≥ λn j for all j = 1, . . . , p, al-

ows us to write Problem (LOCOMF-NI) as

min
∈Rdp

max
σ∈Pn

n∑
i=1

p∑
j=1

λi jωσ(i)‖x j − aσ(i)‖τ +
p−1∑
j=1

p∑
j′= j+1

μ j j′ ‖x j − x j′ ‖τ ,

(18)

et us introduce the auxiliary variables uij and t j j′ , i = 1, . . . , n and

j, j′ = 1, . . . , p to which we impose that ui j ≥ ωi‖x j − ai‖τ and t j j′ ≥
j j′ ‖x j − x j′ ‖τ , to model the problem in a convenient form.

Now, for any permutation σ ∈ Pn, let uσ j = (uσ(1) j, . . . , uσ(n) j) for

j = 1, . . . , p. Moreover, let us denote by ( · ) the permutation that sorts

ny vector in nonincreasing sequence, i.e. u(1) j ≥ u(2) j ≥ . . . ≥ u(n) j .

sing that λ1 j ≥ . . . ≥ λn j and since ui j ≥ 0, for all i = 1, . . . , n and

j = 1, . . . , p then

n

i=1

p∑
j=1

λi ju(i) j = max
σ∈Pn

n∑
i=1

p∑
j=1

λi juσ(i) j. (19)

The permutations in Pn can be represented by the binary vari-

bles

pi jk =
{

1, if ui j goes in position k,

0, otherwise,

mposing that they verify the following constraints:

n

i=1

pi jk = 1, ∀ j = 1, . . . , p, k = 1, . . . , n,

n

k=1

pi jk = 1, ∀i = 1, . . . , n, j = 1, . . . , p.

Next, combining the two sets of variables we obtain that right-

and side of (19) can be equivalently written as

n∑
i=1

p∑
j=1

λi ju(i) j = max

n∑
i=1

p∑
j=1

n∑
k=1

λi jui j pi jk

s.t

n∑
i=1

pi jk = 1, ∀ j = 1, . . . , p, k = 1, . . . , n,

n∑
k=1

pi jk = 1, ∀i = 1, . . . , n, j = 1, . . . , p,

pi jk ∈ {0, 1}.
(20)

ow, we point out that for fixed j, i.e. considering the terms that con-

ain u1 j, . . . , un j, we have that

n∑
i=1

λi ju(i) j = max

n∑
i=1

n∑
k=1

λi jui j pi jk

s.t

n∑
i=1

pi jk = 1, ∀k = 1, . . . , n,

n∑
k=1

pi jk = 1, ∀i = 1, . . . , n,

pi jk ∈ {0, 1}.

(21)

he problem above is an assignment problem and its constraint ma-

rix is totally unimodular, so that solving a continuous relaxation

f the problem always yields an integral solution vector (see Ahuja,

agnanti, & Orlin, 1993), and thus a valid permutation. Moreover, the

ual of the linear programming relaxation of (21) is strong and also

ives the value of the original binary formulation of (21). Hence, for

xed j ∈ {1, . . . , p} and for any vector u· j ∈ Rn, by using the dual of
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Fig. 2. Demand points in Example 7 (filled circles) and solutions (triangles).
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the assignment problem (21) we obtain the following expression⎧⎨
⎩

n∑
i=1

λi ju(i) j = min

n∑
i=1

vi j +
n∑

l=1

wl j

s.t vi j + wl j ≥ λl jui j, ∀i, l = 1, . . . , n.

(22)

Finally, we replace (22) in (18) and we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

n∑
i=1

p∑
j=1

vi j +
n∑

l=1

p∑
j=1

wl j +
p−1∑
j=1

p∑
j′= j+1

t j j′

s.t vi j + wl j ≥ λl jui j, ∀i, l = 1, . . . , n, j = 1, . . . , p,

ui j ≥ ωi‖x j − ai‖τ , i = 1, . . . , n, j = 1, . . . , p,

t j j′ ≥ μ j j′ ‖x j − x j′ ‖τ , j, j′ = 1, . . . , p.

(23)

It remains to prove that each inequality ui j ≥ ωi‖x j − ai‖τ , i =
1, . . . , n, j = 1, . . . , p can be replaced by the system

yi jk − x jk + aik ≥ 0, k = 1, . . . , d,

yi jk + x jk − aik ≥ 0, k = 1, . . . , d,

yr
i jk ≤ ς s

i jkur−s
i j

, k = 1, . . . , d,

ω
r
s

i

d∑
k=1

ςi jk ≤ ui j,

ςi jk ≥ 0, ∀ k = 1, . . . , d.

Indeed, set ρ = r
r−s , then 1

ρ + s
r = 1. Let (x̄ j, ūi j) fulfil the inequal-

ity ui j ≥ ωi‖x j − ai‖τ . Then we have

ωi‖x̄ j − ai‖τ ≤ ūi j ⇐⇒ ωi

(
d∑

k=1

|x̄ jk − aik| r
s

) s
r

≤ ū
s
r

i j
ū

1
ρ

i j

⇐⇒ ωi

(
d∑

k=1

|x̄ jk − aik| r
s ū

r
s (− r−s

r )

i j

) s
r

≤ ū
s
r

i j

⇐⇒ ω
r
s

i

d∑
k=1

|x̄ jk − aik| r
s ū

− r−s
s

i j
≤ ūi j (24)

Then (24) holds if and only if ∃ςi j ∈ Rd, ςi jk ≥ 0, ∀k = 1, . . . , d

such that

|x̄ jk − aik| r
s ū

− r−s
s

i j
≤ ςi jk, satisfying ω

r
s

i

d∑
k=1

ςi jk ≤ ūi j,

or equivalently,

|x̄ jk − aik|r ≤ ς s
i jkūr−s

i j
, ω

r
s

i

d∑
k=1

ςi jk ≤ ūi j. (25)

Set ȳi jk = |x̄ jk − aik| and ς̄i jk = |x̄ jk − aik|τ ū
−1/ρ
i j

. Then, clearly

(x̄ j, ūi j, ȳi j, ς̄i j) satisfies (6)–(9) and (14).

Conversely, let (x̄ j, ūi j, ȳi j, ς̄i j) be a feasible solution of (6)–(9) and

(14). Then, ȳi jk ≥ |x̄ jk − aik| for all i, j and by (8) ς̄i jk ≥ ȳ
( r

s )

i jk
u

− r−s
s

i j
≥

|x̄ jk − a jk|τ ū
− r−s

s
i j

. Thus,

ω
r
s

i

d∑
k=1

|x̄ jk − ajk| r
s ū

− r−s
s

i j
≤ ω

r
s

i

d∑
k=1

ς̄i jk ≤ ūi j,

which in turns implies that ω
r
s
i

d∑
k=1

|x̄ jk − a jk| r
s ≤ ūi j ū

r−s
s

i j
and hence,

ωi‖x̄ j − ai‖τ ≤ ūi j . In the same way we prove that each inequality

j j′ ≥ μ j j′ ‖x j − x j′ ‖τ , j, j′ = 1, . . . , p can be replaced by the system

z j j′k − x jk + x j′k ≥ 0, k = 1, . . . , d,

z j j′k + x jk − x j′k ≥ 0, k = 1, . . . , d,
zr
j j′k ≤ ξ s

j j′ktr−s
j j′ , k = 1, . . . , d,

μ
r
s

j j′

d∑
k=1

ξ j j′k ≤ t j j′ ,

ξi jk ≥ 0, ∀ k = 1, . . . , d.

ext, we observe that each one of the inequalities yr
i jk

≤ ς s
i jk

ur−s
i j

, k =
, . . . , d (respectively zr

j j′k ≤ ξ s
j j′ktr−s

j j′ , k = 1, . . . , d) can be trans-

ormed, according to Lemma 2, into 4log r linear matrix inequali-

ies (respectively 4log r linear matrix inequalities), being then exactly

epresentable as second order cone constraints or semidefinite con-

traints.

Finally, it is straightforward to check Slater condition, for instance,

or the system (23). Set vi j = 1, wl j = 3
2 Mλl j max

i
ωi, ui j = 3

2 Mωi + 2

ith M > >0 large enough and t j j′ = 2Mμ j j′ + 1 for i, l = 1, . . . , n and

j, j′ = 1, . . . , p. �

In the case that the considered norm is polyhedral (in particular if

= 1 or τ = +∞ in the theorem above), the above problem reduces

o a standard linear problem and its number of variables and inequal-

ties highly decreases.

As a consequence of Theorem 6 and Lemma 2, Problem (LOCOMF-

I) can be solved in polynomial time for any dimension d, by solving

ts reformulation as a SOCP problem (NIMFOMPλ) (see Monteiro &

suchiya, 2000; Nesterov, Nemirovski, & Ye, 1994). The reader may

ote that this is an important step forward with respect to the al-

eady stated complexity results (see e.g. Rodríguez-Chía et al., 2000).

here, it was proven that these problems are solvable in polynomial

ime in the plane (d = 2) and using polyhedral norms. Here we ex-

end this complexity result to be true in any dimension d > 1 and for

ny polyhedral or �τ -norm with τ ∈ Q, τ ≥ 1.

xample 7. Consider a two-facility problem on the Eu-

lidean plane with a set of 4 demand points given by

= {(9.46, 9.36), (8.93, 7.00), (2.20, 1.12), (1.33, 8.89)} (A is subset

f size 4 of the 50-cities data set from Eilon, Watson-Gandy, and

hristofides (1971)), and (randomly generated-) lambda weights:

11 = 147.31, λ21 = 24.44, λ31 = 24.16, λ41 = 10.77, λ12 = 119.08),

22 = 0.56, λ32 = 0.00, λ42 = 0.00, μ12 = 0.56 and wi = 1 for all

= 1, . . . , n.

The problem to be solved can be written as

min
1,x2∈R2

147.31d(1)(x1) + 24.44d(2)(x1) + 24.16d(3)(x1)

+10.77d(4)(x1) + 119.08d(1)(x2) + 0.56d(2)(x2) + 0.00d(3)(x2)

+ 0.00d(4)(x2) + 0.56‖x1 − x2‖2

We get as solution: x∗
1 = (5.24, 6.41) and x∗

2 = (5.61, 5.44), with

bjective value f ∗ = 1704.55. Fig. 2 shows the points and the
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olutions of the problem. The reader may observe that in general op-

imal solutions of this problem do not collocate.

. Single allocation multifacility location problems with ordered

edian objective functions

The structural difference of a single allocation multifacility loca-

ion problem with those considered in the previous section rests on

he fact that in the former each demand point shall be directed to a

nique serving facility by means of a predetermined allocation rule

usually closest distance). This little difference makes the problem

uch more difficult since the convexity properties exhibited in the

revious models are no longer valid and more sophisticated tools

ust be used to solve these problems.

In this framework, we are given a set {a1, . . . , an} ⊂ Rd endowed

ith a �τ -norm; and a feasible domain K = {x ∈ Rd : g j(x) ≥ 0, j =
, . . . , m} ⊂ Rd, closed and semi-algebraic. The goal is to find p

oints x1, . . . , xp ∈ K ⊂ Rd minimizing some globalizing function of

he shortest distances to the set of demand points.

The main feature and what distinguishes multifacility location

roblems from other general purpose optimization problems, is that

he dependence of the decision variables is given throughout the

orms to the demand points, i.e. ‖x − ai‖τ .

For the ease of presentation we have restricted ourselves to

he particular case of pure location problems, namely f̃i(x) :=
in j=1...p ‖x j − ai‖τ which has attracted a lot of attention in the lit-

rature of Location Analysis. Needless to say that our methodology

pplies to more general forms of objective function, namely we could

andle general rational functions of the distances as for instance by

lanco et al. (2013).

We shall define the dependence of the decision vari-

bles x1, . . . , xp ∈ Rd via t = (t1, . . . , tn), where ti : Rpd �→ R,

i(x1, . . . , xp) := min
j

‖x j − ai‖τ , i = 1, . . . , n. Therefore, the ith com-

onent of the ordered median objective function of our problems

eads as

f̃i(x) : Rpd �→ R

x = (x1, . . . , xp) �→ ti := min
j=1...p

{‖x j − ai‖τ }.
Consider the following problem

λ := min
x

{
n∑

i=1

λi f̃(i)(x) : x = (x1, . . . , xp), x j ∈ K, ∀ j = 1, . . . , p},
(LOCOMF)

here

• K ⊆ Rd satisfies the Archimedean property. Without loss of gen-

erality we shall assume that we know M > 0 such that ‖xj‖2 ≤ M,

for all j = 1, . . . , p.
• τ := r

s ≥ 1, r, s ∈ N with gcd(r, s) = 1.
• λ� ≥ 0 for all � = 1, . . . , n.

First of all, we observe that problem LOCOMF is well defined and

hat it has an optimal solution. Indeed, we are minimizing a continu-

us function over a compact set in Rd . Thus, by Weierstrass theorem

roblem LOCOMF admits an optimal solution. On the other hand, un-

ike in the previous section uniqueness can not be easily obtained

ince, as proven by the following easy example, multiple solutions

ften occurs.

xample 8. Consider a two-facility problem on the Euclidean plane

ith set of demand points A = { (0, 0), (0, 1), (1, 1), (1, 0)}. Assume

hat the λ-weights are λi j = 1 for all i = 1, . . . , n, j = 1, . . . , p. Then,

ny pair of points x∗
1 ∈ {0} × [0, 1] and x∗

2 ∈ {1} × [0, 1] is an optimal
olution. f
.1. A mixed integer second order cone programming approach to solve

OCOMF

In this section, we present a tractable formulation of problem

OCOMF as a mixed integer nonlinear program with linear objective

unction. For each i ∈ {1, . . . , n}, we set UBi as a valid upper bound on

he value of ‖x̄ j − ai‖τ , x̄ j ∈ K.

We introduce the following auxiliary problem

ρ̂λ = min

n∑
�=1

λ�θ� (MFOMP)λ

.t. h1
il := ti ≤ θ� + UBi(1 − wi�),∀i = 1, . . . , n, � = 1, . . . , n, (26)

2
l := θ� ≥ θ�+1,∀� = 1, . . . , n − 1, (27)

3
i j := ui j ≤ ti + UBi(1 − zi j),∀ i = 1, . . . , n, j = 1, . . . , p, (28)

4
i jk :=vi jk − x jk+aik ≥ 0,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d,

(29)

5
i jk :=vi jk+x jk − aik ≥ 0,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d,

(30)

6
i jk := vr

i jk ≤ ζ s
i jkur−s

i j
,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d,

(31)

7
i j :=

d∑
k=1

ζi jk ≤ ui j,∀i = 1, . . . , n, j = 1, . . . , p, (32)

8
i :=

p∑
j=1

zi j = 1,∀i = 1, . . . , n, (33)

9
� :=

n∑
i=1

wi� = 1,∀� = 1, . . . , n, (34)

10
i :=

n∑
l=1

wil = 1,∀i = 1, . . . , n, (35)

i� ∈ {0, 1},∀ i, � = 1, . . . , n, (36)

i j ∈ {0, 1},∀ i = 1, . . . , n, j = 1, . . . , p, (37)

�, ti ∈ R+,∀i, � = 1, . . . , n, (38)

i jk, ζi jk, ui j ∈ R+,∀i = 1, . . . , n, j = 1, . . . , p, k = 1, . . . , d, (39)

j ∈ K,∀ j = 1, . . . , p. (40)

With constraints (26) and (27), we enforce the variable θ l to

ssume the value ti that is sorted in the lth position of the vec-

or t, while constraints (28)–(32) model the evaluation of ‖x j −
i‖τ for all i and j. Constraints (34)–(36) model permutations, and

onstraints (33) and (37) are introduced to model the allocation

f element indexed by i to a unique index j. Therefore, putting

ll the above ingredients together we get that in the optimum

i = min
j

‖x j − ai‖τ .

Let N := 3n + n2 + n − 1 + np(3d + 2) = n2 + 4n + np(3d + 2) −
and denote by {h1, . . . , hN} the constraints (26)–(35) in the

roblem above. Let K̂ denote the feasible domain of Problem

FOMPλ.

heorem 9. Let x be a feasible solution of LOCOMF then there exists a

olution (x, z, u, v, ζ , w, t, θ) for MFOMPλ such that their objective val-

es are equal. Conversely, if (x, z, u, v, ζ , w, t, θ) is a feasible solution

or MFOMP then x is a feasible solution for LOCOMF. Furthermore, if K
λ
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satisfies Slater condition then the feasible region of the continuous relax-

ation of MFOMPλ also satisfies Slater condition and ρλ = ρ̂λ.

Proof. Let x̄ = (x̄1, . . . , x̄p) be a feasible solution of LOCOMF. Then, it

satisfies x̄ j ∈ K, for all j = 1, . . . , p. Let ui j = ‖x̄ j − ai‖τ , based in (24)

and (25), ‖x̄ j − ai‖τ can be represented by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vi jk = |x̄ jk − aik|,
vr

i jk
= ζ s

i jk
ur−s

i j
,

d∑
k=1

ζi jk = ui j,

ζ ≥ 0.

For i = 1, . . . , n, j = 1, . . . , p and k = 1, . . . , d, we denote by

i = min
�

‖x̄� − ai‖τ and zi j =

⎧⎨
⎩

1, if min
l

‖x̄l − ai‖τ

= ‖x̄ j − ai‖τ ,

0, otherwise.

Observe that if it would exist j′ ∈ {1, . . . , p} such that j′ �= j and

min
l

‖x̄l − ai‖τ = ‖x̄ j′ − ai‖τ then we can choose arbitrarily any of

them, because a client can be assigned to only one facility.

These values clearly satisfy constraints (28)–(32) and (37)–(39).

Besides, let σ be the permutation of (1, . . . , n) such that tσ (1) ≥ …

≥ tσ (n). Take,

wil =
{

1, if i = σ(l),

0, otherwize; and θl = tσ(l).

Then the constraints (26) and (27) are also satisfied. Clearly,∑n
�=1 λ�θ� = ∑n

i=1 λi f̃(i)(x).

Conversely, if (x̄, z̄, ū, v̄, ζ̄ , w̄, t̄, θ̄ ) is a feasible solution of MFOMPλ

then, clearly x̄ j ∈ K and x̄ is a feasible point of LOCOMF.

Consider the continuous relaxation of problem (MFOMPλ). Sup-

pose that K satisfies Slater condition. Take xj for all j = 1, . . . , p, in the

interior of K. Set θ = 4M + 1
�
, ti = 3M and ui j = 2M for �, i = 1, . . . , n

and j = 1, . . . , p with M > >0 large enough. Then, for any zi j, wi� ∈
[0, 1] we get that the set of inequality constraints satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ� − ti + UBi(1 − wi�) > 0, i = 1, . . . , n, � = 1, . . . , n,

θ� > θ�+1, � = 1, . . . , n,

ti − ui j + UBi(1 − zi j) > 0, ∀ i = 1, . . . , n, j = 1, . . . , p,

ui j > ‖x j − ai‖τ , ∀ i = 1, . . . , n, j = 1, . . . , p.

This proves that the continuous relaxation of MFOMPλ satisfies Slater

condition.

By the above arguments, optimal solutions and optimal values of

both formulations coincide. �

Example 10. To illustrate the applicability of the above formulation,

in the following we have applied it to an instance of 10 demand points

extracted from the 50-points data set by Eilon et al. (1971):

(9.46, 9.36), (7.43, 1.61), (6.27, 3.66), (5.00, 9.00), (2.83, 9.88), (2.20,

1.12), (1.90, 8.35), (1.68, 6.45), (1.24, 6.69), (0.75, 4.98).

For p = 3, τ = 7
5 and λ = (2.25, 1.70, 1.14, 1.11, 1.06, 1.03, 1.01,

1.01, 1.00, 1.00), we get the solutions x∗
1

= (6.19, 1.58), x∗
2

=
(5.00, 9.36), and x∗

3 = (1.44, 6.55), with optimal objective value f ∗ =
30.1460. Fig. 3 shows the demand points (filled dots), solutions (filled

triangles) and the allocation of the demand points to the facilities

(dashed lines).

An interesting observation that follows from Problem (MFOMPλ)

is that the unconstrained version of the location problem is an ap-

pealing mixed integer nonlinear program. Observe that the only set

of nonlinear constraints that appear in (MFOMPλ) is (31). However,

(31) can be written equivalently as a polynomial number of second

order cone constraints, according to Lemma 2. This way, Problem
MFOMPλ) becomes a mixed integer nonlinear program with lineal

bjective function and only linear and second order cone constraints,

lthough with two sets of binary variables, namely w and z. Neverthe-

ess, there are nowadays general purpose solvers, as Gurobi, Cplex or

press, that implements exact B&B algorithms for this type of prob-

ems and that are rather efficient.

emark 11. Assume that the hypothesis of Theorem 9 are satisfied.

n addition, any of the following conditions hold

1. gi(x) are concave for i = 1, . . . , m and − ∑m
i=1 μi∇2gi(x) 	 0 for

each dual pair (x, μ) of the problem of minimizing any linear

functional ctx on K (Positive Definite Lagrange Hessian (PDLH)).

2. gi(x) are sos-concave on K for i = 1, . . . , m or gi(x) are concave

on K and strictly concave on the boundary of K where they

vanish, i.e. ∂K ∩ ∂{x ∈ Rd : gi(x) = 0}, for all i = 1, . . . , m.

3. gi(x) are strictly quasi-concave on K for i = 1, . . . , m.

Then, applying (Blanco et al., 2014b, Theorem 4) to the formula-

ion of Problem (MFOMPλ), we get that there exists a constructive

nite dimension embedding, which only depends on τ and gi, i =
, . . . , m, such that the problem is mixed-integer SDP representable.

From the above observation to solve Problem MFOMPλ efficiently

e have combined a branch-and-bound approach over a mixed inte-

er nonlinear program. In that approach, one may provide two types

f lower bounds in the nodes of the branching tree: a continuous

elaxation and a SDP relaxation based on a hierarchy of SDP “a la

asserre”. Clearly, the first type of bounds are only possible if in each

ode of the tree the continuous relaxation of MFOMPλ satisfies Slater

ondition. This is ensured in Theorem 9.

The consequence of the above transformation is that one can eas-

ly put this family of problems in commercial solvers and then to get

olutions without going to painful ad hoc implementations that may

e problem dependent. We illustrate this approach in our computa-

ional experiments in Section 5.

Finally, we conclude this section providing some results concern-

ng the second type of lower bounds, based on a SDP hierarchy, that

an be used to approximate to any degree of accuracy the solution of

he problem as well as within the branch and bound framework at

ach node of the branching tree.

Let y = (yα) be a real sequence indexed in the mono-

ial basis (xβzηuγ vδζ κwψ tτ θϑ ) of R[x, z, u, v, ζ , w, t, θ ] (with

= (β, η, γ , δ, κ, τ,ψ,ϑ) ∈ Npd × Nnp × Nnp × Nnpd × Nn2 × Nn ×
n × Nnpd). Denote by nv1 = d + np(d + 2) + n2 + 2n + npd the

umber of variables in the extended formulation of the problem.

Let h0(θ) :=
m∑

�=1

λ�θ�, and denote ξ j := 
(deg gj)/2� and ν j :=

(deg hj)/2�, where {g1, . . . , gnK
}, and {h1, . . . , hN} are, respectively,

he polynomial constraints that define K and K̂ \ K in MFOMPλ. For

≥ r0 := max{maxk=1,...,nK
ξk, max j=0,...,N ν j}, introduce the hierar-

hy of semidefinite programs:

nf
y

Ly(pλ)

.t. Mr(y) � 0,

Mr−ξk
(gk, y) � 0, k = 1, . . . , nK,

Mr−ν j
(hj, y)(�

=)0, j = 1, . . . , N,

y0 = 1,

Q1r

ith optimal value denoted inf Q1r (and min Q1r if the infimum is

ttained). The reader may observe that some of the localizing con-

traints Mr−ν j
(h j, y) in Q1r are linear matrix equations since the

amilies of constraints (33)–(35) contain several equations. This is

ndicated in Q1r by our notation Mr−ν j
(h j, y)(�

=)0. Next, based on

roposition 1 and (Lasserre, 2009b, Theorem 6.1) we can state the

ollowing result.
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Fig. 3. Demand points in Example 10 (filled circles), solutions (triangles) and allocation of demand points to facilities (dashed lines).
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Table 1

CPU running times for non-interchangeable multifacility

problem for the Eilon–Watson–Christofides 50-point data set.

p τ

1.5 2 3

2 2.5095 2.1157 3.7470

5 12.7794 6.5161 9.8130

10 29.1873 10.5726 19.5455

15 49.4854 19.1129 40.4506

30 148.7449 40.5635 85.5676
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heorem 12. Let K̂ ⊂ Rnv1 (compact) be the feasible domain of Problem

FOMPλ. Let infQ1r be the optimal value of the semidefinite program

1r. Then, with the notation above:

(a) infQ1r↑ρλ as r → ∞.

(b) Let yr be an optimal solution of the SDP relaxation Q1r. If

rank Mr(yr) = rank Mr−r0
(yr) = ϕ

then min Q1r = ρλ and one may extract ϕ points(
x∗

1
(k), . . . , x∗

p(k), z∗(k), u∗(k), v∗(k), ζ ∗(k), w∗(k) ,

t∗(k), θ ∗(k))
ϕ
k=1

⊂ K̂, all global minimizers of the MFOMPλ

problem.

One of the drawbacks of using hierarchies of SDP problems to ap-

roximate the solution of our original multifacility location problem

MFOMPλ) is the dimension of the SDP objects that must be used

hen the relaxation order increases. The size of the matrices to be

onsidered in the SDP problems that have to be solved grows ex-

onentially with the relaxation order. Significant reductions in the

izes of the problems to be solved can be performed by exploit-

ng the sparsity and symmetry that appear in the location problem.

n the one hand, at times the number of variables that appear in

he polynomial constraints of (MFOMPλ) can be separated in blocks

o that only some of them appear together in some constraints. In

hose cases the SDP variables to be used can be simplified and thus,

he sizes of the moment and localizing matrices are dramatically re-

uced. The application of this result requires the so call running in-

ersection property (see Lasserre, 2006) that easily applies in this

ase. On the other hand, the invariance of this problem under the

ction of the symmetric group applied to the indices of the facili-

ies (j) allows to adapt the results by Riener, Theobald, Andrén, and

asserre (2013) to reduce the dimensionality of the matrices that

ppear in the hierarchy of SDP (Q1r) that converge to the optimal

olution. The interested reader can find all the details of the appli-

ation of the dimensionality reduction based on sparsity and sym-

etry for multifacility location problems by Blanco, Puerto, and El-

aj Ben-Ali (2014a). Combining both approaches helps to solve some

roblems.

. Computational experiments

We have performed a series of computational experiments to

how the efficiency of all the proposed formulations and approaches.

he SOCP (LOCOMF-NI) and the mixed integer SOCP (MFOMPλ) for-

ulations have been coded in Gurobi 5.6 and executed in a PC with

n Intel Core i7 processor at 2x 2.40 GHz and 4 GB of RAM. We have

pplied our formulations to the well-known 50-points data set by

ilon et al. (1971) by considering different number of facilities, norms
nd weights. In particular we have considered the number of facili-

ies to be located, p, ranging in {2, 5, 10, 15, 30} and τ (the norm) in
3
2 , 2, 3}. We have run both the unconstrained non-interchangeable

OCOMF-NI model and the single-allocation model MFOMPλ. For the

on-interchangeable model we have considered random λ and μ
eights (fulfiling the conditions described in (3)). Table 1 reports

ur results on these experiments. There, we report the average CPU

imes of 5 different random instances for each problem (when fixing

and τ ).

For general single-allocation multifacility problems, we have con-

ider three of the most classical multifacility models that fit within

he ordered median formulation when particular λ weights are cho-

en: p-median problem, p-center problem and p-k-centrum prob-

em (with k = 0.5 n = 25). In Table 2 we report the overall CPU times

eeded to solve the problems and the optimal solutions provided by

urobi (f∗). These optimal values are important to test accuracy of

olutions for future authors that wish to compare new approaches to

olve these problems.

We observe that the bottleneck for solving (MFOMPλ) is the exis-

ence of binary variables (z and w), since otherwise it would be solv-

ble in polynomial time. Due to the high running time, optimality

ould not be ensured for some instances. In order to ease the reso-

ution some improvements can be done via some preprocessing and

xing binary variables based on a geometric branch and bound phase.

his preprocessing is effective whenever the dimension of the space

f variables in low, namely d = 2, 3.

Finally, to illustrate the use of the hierarchy of problems Q1r, we

ave applied to the same data set by Eilon et al. (1971) the SDP re-

axation Q12 for p-median problems with Euclidean distances. Im-

lementation was done in SDPT3. The results are detailed in Table 3.

he reader can observe that the results obtained with this approach

in terms of accuracy) are good although we could no certify optimal-

ty since the rank condition was not satisfied. Moreover, the running

imes are considerably higher (by several orders of magnitude) than

hose needed for similar problems solved with the MISOCO imple-

entations in Gurobi.
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Table 2

Computational results for p-median, p-center and p-25-centrum problems for the 50-points data set by Eilon et al.

(1971).

p τ p-median p-center p-25-centrum

CPUTime f∗ CPUTime f∗ CPUTime f∗

2 1.5 22.31 150.955 1.03 4.9452 10.08 100.8474

2 1.13 135.5222 0.28 4.8209 0.38 95.0892

3 23.68 130.8560 13.51 4.7880 139.03 89.0238

5 1.5 55.28 78.6074 3.73 2.8831 33.09 53.4995

2 12.49 72.2369 5.37 2.6610 7.61 49.6932

3 125.10 68.1791 2.87 2.5094 18.23 46.9844

10 1.5 5.36 45.0525 2.66 1.6929 68.36 30.7137

2 2.31 41.6851 5.3 1.6113 17.93 28.9017

3 4.76 39.7222 55.76 1.5950 225.64 27.5376

15 1.5 6.70 30.0543 9.44 1.1139 49.92 22.4165

2 43.91 27.6282 0.62 1.0717 11.26 20.6536

3 150.99 26.6047 50.08 1.0530 244.59 20.8544

30 1.5 14.45 9.9488 74.43 1.0080 202.54 9.0806

2 4.81 8.7963 1.53 0.9192 5.29 8.5216

3 198.78 8.6995 57.37 0.8508 287.90 8.0016

Table 3

Second relaxations in the Lasserrs’s hierarchy for Euclidean p-

median problems for the data set by Eilon et al. (1971).

p CPUTime (second) Duality SDP Gap

2 6.6755 0.00000001

3 52.9310 0.00000321

4 317.4097 0.00000288

5 2907.4987 0.00000398

B

B

C

D

E

K

K

K

L

L

L

L

L

M

M

M

N

N

6. Conclusions

We propose a novel, effective mixed integer nonlinear program-

ming formulation for the continuous multifacility ordered median

location problem for any �τ -norm and in any dimension. This for-

mulation provides a unified approach for dealing with a broad fam-

ily of multifacility location problems which up to now were usually

solved only for some special cases and usually in low dimension.

We also provide lower bounds for the nodes of the branching tree

based on a hierarchy of SDP relaxations “a la Lasserre”. A simpler class

of multifacility (multiple-allocation) location problems is also ana-

lyzed for which optimal solutions are obtained by a continuous SOCP

formulation.
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